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Abstract. The critical behaviour of the Ising model on the square lattice with ferromagnetic 
nearest-neighbour interactions (J) and anti-ferromagnetic next-nearest neighbour inter- 
actions (J’) is discussed for small A = J/lJ’1. The singular part of the free energy is calculated 
to second order in A by perturbation theory. Near the critical temperature of the 
unperturbed system (J = O), this expansion is found to have a form which may be exponen- 
tiated yielding, for non-zero A ,  a non-universal critical line along which the exponents vary 
continuously with A. For small A ,  the specific heat exponent, a = a l A 2 + 0 ( A 2 )  with 
a1 = 1.5. 

1. Introduction 

It is becoming increasingly apparent that the critical behaviour of two-dimensional 
king spin systems has a greater richness than was previously thought. Indeed, Krinsky 
and Mukamel (1977) have argued that such systems (for appropriate choices of the 
interaction parameters) can exhibit phase transitions characterised by order parameters 
of dimension n L 2. In particular, they showed that the system described by the 
Hamiltonian (a = f 1) 

H =  - J C ~ ~ ’ - J ’  C 
nn nnn 

has a two-component order parameter in the regime? 

- J S 2 J ’ <  0. 

In (1 .l), the first sum runs over the nearest-neighbour bonds of a square lattice and the 
second over the next-nearest-neighbour (diagonal) bonds. Krinsky and Mukamel went 
on to conjecture that the critical behaviour of (1.1) should belong to a universality class 
of the two-component vector model. Recent work (see JosC er a1 1977 and references 
therein) has established that the critical behaviour of this model in two dimensions can 
be particularly rich, including non-universal critical lines (see also Kadanoff 1977). 

The existence of a non-universal critical line in (1.1) in the regime (1.2) was earlier 
suggested by van Leeuwen (1975) from an investigation of the fixed point structure and 
critical surface of two-dimensional Ising systems. Subsequently, Nightingale (1977) 
performed approximate renormalisation group calculations on (1. l ) ,  which indicated 

+This inequality differs from that quoted in Krinsky and Mukamel 1977, which is misprinted. 
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680 M N Barber 

that the exponents varied continuously with J/]J’I  for negative J ’ .  In  this paper, we 
present an analysis which confirms these conclusions, at least for small J/IJ’/. 
Specifically, we show using perturbation theory that (1.1) possesses a critical lino given 
by 

K :  =K:,o + c ( J / J ’ ) z + o [ ( J / J ’ ) 2 ] ,  (1.3) 

where K ’  = pIJ’I, K ~ o  (=  $ln(l+21’z)) is the critical temperature for J = 0 and c is a 
positive constant with the approximate value 

c -0 .134 .  (1.4) 

a = a1(J/J’I2 + 0[ (J / J ’ )21 ,  (1.5) 

Along the line, the specific heat exponent varies as 

where a1 has the approximate value 

a1 = 1 .496 .  (1.6) 

Our arguments are arranged as follows. In the following section we briefly describe 
the possible ground states of (1.1) and the associated critical surface. This knowledge 
helps to elucidate the possible phase transitions of the system. 8 3 specialises to the 
regime (1.2) and we construct a perturbation expansion of the free energy about the line 
J = 0, J‘< 0. The behaviour of the leading correction term, in the vicinity of the critical 
temperature of the unperturbed ( J  = 0) system, is analysed in 8 4. On the basis of this 
behaviour, we argue in 0 5 that the results of 8 4 can be exponentiated to yield a 
continuous exponent which reduces to (1.5) in the simplest limit. A concluding 
discussion is given in 8 6 .  

2. Ground states 

Depending on the values of the interaction parameters, J and J ’ ,  the Hamiltonian (1.1) 
has three possible ground states. These are depicted in figure 1, where we also show the 
spin configuration in each state. The state SAF (sub-lattice anti-ferromagnetic) is of 
special interest because of its four-fold degeneracy. It is this state that according to 
Krinsky and Mukamel (1977) has a two-component order parameter. 

Along the line J = O ,  J’<O, the system (1.1) decouples into two independent 
anti-ferromagnetic Ising models on square lattices with nearest-neighbour interactions 
J’.  Hence along this line, (1.1) exhibits a conventional Ising anti-ferromagnetic 

Figure 1. Possible ground states of Hamiltonian ( 1 . 1 )  as a function of J and J‘. 
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transition at a temperature 

TC = IJ‘I/~BKL,O, K: ,~ = 1 l n ( l+  2l’’). (2.1) 
The fixed points and associated critical surfaces of (1.1) have been investigated 

using renormalisation group techniques (see e.g. Nauenberg and Nienhuis 1974, 
van Leeuwen 1975, Nightingale 1977). The intercept of this surface with the K-K’ 
plane (K’ = PJ, K’ = P J ’ )  consists of two branches passing through the points (K = 
0, K ’ =  +KL,o) and (K = 0, K’=  -K:,o) respectively. Van Leeuwen (1975) has argued 
on the basis of symmetry that this surface is cusped at the first point but smooth and 
analytic at the latter, which is the point of interest here. 

Figure 1 indicates that there is no change in the nature of the ground state if J’ is 
fixed at a negative value and a sufficiently small nearest-neighbour interaction J 
switched on to couple the two sub-lattices. In view of this observation and van 
Leeuwen’s conjectured analyticity of the critical surface, we make the crucial assump- 
tion that at any finite temperature we can treat the thermodynamics for J ’ <  0 and J 
small by perturbation theory. 

3. Perturbation expansion of the free energy 

We will, therefore, expand the partition function 

Z N ( K , K ’ ) = C e x p  
( U }  nnn 

in powers of K, where 

(3.1) 

As is usual in Ising problems, we write 

= (cosh K)2N n (1 + vuiuj), 
( i i )  

(3.3) 

where ( i j )  denotes a nearest-neighbour pair, and 

U = tanh K. (3.4) 

Expanding the product in (3.3) yields 

Z,(K,K‘)=(coshK)ZNZ,(O, K ’ ) ( ~ + u  C ( a i ~ j ) o + v ’  ( ~ i U , ~ k ~ ! ) O + O ( v ’ ) ) ,  
i j  ( i i )  (kl) 

( r i ) + ( k l )  

(3.5) 
where the ensemble averages (. . .)o are to be taken with respect to (1.1) with J = 0. 

As observed above for K = 0 the system decouples into two independent nearest- 
neighbour Ising anti-ferromagnets; one on each of the sub-lattices of the original 
lattice. Hence if i and i are nearest-neighbour sites on the original lattice, they will be 
decoupled for K = 0. Thus we have 

for all T 5 0, since each sub-lattice is an anti-ferromagnet. The free energy per spin is 
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consequently to order U’ given by 

@f(K, K’) = @f(O, K’) - 2 ln(cosh K )  + u 2 [ 2  - f l (K’)]+ O(u3),  (3.7) 

where 

Note that we have removed the restriction that the bond (ij) should not equal the bond 
W. 

The leading term Pf(0 ,  K’) in (3.7) is simply the Onsager free energy and thus its 
singular part varies as 

(3.9) Pfs(O, K’)  -A(AK’)’ 1nlAK‘I + .  . . , AK’+ 0, 

where 

AK’= K‘-Ki,o 

with K:,o given by (2 .1) ,  and 

A = 4 1 ~ .  

(3.10) 

(3.11) 

4. Analysis of f l (K’ )  

We turn now to an analysis of f l ( K ‘ ) ,  particularly near K:,o. To simplify the evaluation 
of fl(K’), let us change notation as follows: 

( a )  Decompose the original lattice SZ into its two sub-lattices 0, and ab. Label the 
sites of 0, by position vectors r. The sites of SZb are then located at positions r f e l  and 
r f e z  relative to r, where e l  and e2  are the unit lattice vectors of SZ. 

( 6 )  Denote the spin at site r E Cl, by a ( r )  and that at r‘E S Z b  by p ( r ’ ) .  

With this notation 

Substitution of this result in (3.8) allows an easy decoupling of the four-spin correlation 
into two-spin correlations on a, and Ob. Explicitly we find that 

+ r ( r - r ’ + 2 e l ) + 2 r ( r - r ’ + e l  - e z ) + 2 r ( r - r ‘ - e l  +e2> 

+ r ( r - r ’ - 2 e 1 ) + r ( r - r ’ + 2 e 2 ) + T ( r - r ’ - 2 e 2 )  

+ 2 r ( r - r ‘ + e l  + e 2 ) + 2 r ( r - r ’ - e l - e 2 ) l ,  
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is the correlation between two spins at sites r and r‘ of a nearest-neighbour Ising 
anti-ferromagnet on a square lattice. All terms in (4 .2)  can now be regarded as referring 
to the same lattice specified by the unit vectors 

S1 = e l  +e2 and S2 = e l  - e2. (4 .4 )  

Equation (4.2) immediately reveals the crucial role of anti-ferromagnetic coupling 
J ’ .  If J’ were positive, all terms in (4 .2)  would be positive and the sum would diverge at 
T,. However, for an anti-ferromagnet r ( r  - r’)  is negative if the sites r and r’ lie on 
different sub-lattices. With this in mind, we can determine the signs of the various terms 
in (4 .2) .  

Assume r and r’ belong to the same sub-lattice so that T(r  - r ’ )  is positive. Then the 
sites r’ and r * & belong to different sub-lattices so that T(r -r‘*S2)  is negative. 
Conversely sites r’ and r f (S1 f S2)  ( = r f 2 e i )  will belong to the same sub-lattice 
implying that T(r - r’ f 2e,) is positive. If r and r’ belong to different sub-lattices so that 
T(r  - r ’ )  is negative, the same argument goes through but with all signs reversed. 

This argument allows (4 .2 )  to be reduced to 

(4 .4 )  

where T ( r )  = (a (O)a( r )>  is now the correlation function in a ferromagnetic king model 
with coupling - J ’  > 0. These have been extensively investigated and calculated by 
several authors (see e.g. Kaufman and Onsager 1949, Fisher and Burford 1969, Wu et 
a1 1976). The operator A: appearing in (4 .4 )  is a lattice difference operator defined by 

A?g(r)  = 4 g ( r )  - 2g(r  + SI) - 2g(r  - 61) - 2 g ( r  + 6 2 )  

- 2 g ( r  - & ) + g ( r  +SI + S d + g ( r  -81 -62) 

+ g ( r  + S1 - 8 2 )  + g(r  - S1 + S2). (4 .5)  

For future reference, we note that if (4 .5)  is expanded in the lattice spacing a, we can 
approximate A: by 

An alternative expression for f l ( K ’ )  follows if we Fourier transform. Defining 

we obtain 

f i ( K ’ )  = 2 1f(q)l2[2 - 2 cos 4,a - 2 cos 4,a + cos(q, +4,)a +cos(q, - qy)a] ,  
Q 

(4 .6)  

(4 .7)  

(4.8) 

where a is the lattice spacing. Near the critical temperature, the summand behaves as 
4 

The required asymptotic behaviour of f l ( K ’ )  near K:,o now follows from known 
results for F(r).  In particular, since (see e.g. Fisher and Burford 1967) 

-4+1/2 2 2 4,qY -q1 l2  for small 4,  and hence fl(K’) converges. 

T ( r )  = T , ( r )  - E ( r ) A K ’  1nlAK’I . . . (4.9) 



684 M N Barber 

as AK‘+ 0 for all r, we obtain 

f l ( K ’ )  = f ~ . ~  -pAK‘ 1nlAK’I +q(AK’)Z(lnlAK’()2 + O[(AK’)2 InIAK‘l] (4.10) 

The coefficients appearing in this expression are given by 

and 

q = 1 E(r)A?E(r). 
r 

For large r = /rl, we have (see e.g. Wu er a1 1976), 

r,(r) - ~ ~ ( a / r ) ” ~  

E ( ~ )  = 2 ~ ~ ( ~ / ~ ) ~ / ~ ,  

where 

Do = 0.703380. . .. 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Whilst (4.5) implies that E( r )  diverges for large r, it is straightforward to check using the 
integral test and (4.6) that all sums in (4.1 1)-(4.13) converge for all T 2 0. 

5. Specific heat exponent for small J 

Substituting the expansion (4.10) in (3.7) and making use of (3.9) implies that the 
singular part of f (K,  K’)  varies, near the critical temperature K:,o of the unperturbed 
system (J = 0), as 

pfs(K,  K‘) zA(AK’)~ InlAKl‘+pvZAK‘ InlAK’) -qu2(AK’~2~1nJAK’~12+. . . (5.1) 

The correction terms in this expansion are of O[V~(AK’)~  InlAK’I] from f l ( K ‘ )  and 
O[(AK’)2 lnlAK‘1] from f s ( O ,  K’) and we have absorbed all non-singular terms into the 
regular part of f ( K ,  K’) .  

The structure of (5.1) is very suggestive. Indeed, Kadanoff and Wegner (1971), in 
their discussion of the eight-vertex model (Baxter 19721, argued that the appearance of 
logarithmic factors in a perturbation expansion, such as (5. l), could be an indication of a 
marginal operator. The existence of such an operator, in turn, implies the possibility of 
non-universal behaviour. Thus we compare (5.1) with the expansion for small v of 

pfs(K, K‘) =A(Ak’)’([l- lAk‘l-”‘”*’]/a(u2)),  (5.2) 
where 

AK’ = AK‘ + ~ ( v ’ )  (5.3) 

In (5.2) and (5.3) both a ( v z )  and e(vz) are assumed to tend smoothly to zero as v goes to 
zero. Expanding (5.2) to first order in (Y and E reproduces (5.1) if 

a(u2)  = (2q/A)v2+O(v2) (5.4) 
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and 

~ ( u ’ )  = (p/2A)v2+0(u2) (5.5) 

To evaluate these results quantitatively, we require estimates of the constants p and 
q defined by (4.12) and (4.13). Unfortunately, exact valuesof T,(r) andE( r )  are known 
for only a few lattice vectors r with / r /  relatively small. Indeed, E(r) appears only to 
have been evaluated for r /a  s 5l’* (see e.g. Fisher and Burford 1967). Thus to estimate 
p and 4 we make the following approximations: 

( a )  For r / a  > 5”’,  we approximate r,(r) and E(r) by their asymptotic expressions 
(4.14) and (4.15) respectively. 

( b )  The sums in (4.12) and (4.13) are then performed numerically out to IrI = ro, 
with the remainder approximated by an integral, in which A; is replaced by the 
continuum approximation (4.6). 

In this way, we estimate 

p = - 1,759 4 4,903 (5.6) 

The main source of error is presumably the first approximation. However, comparison 
of the asymptotic formulae with the exact values tabulated by Fisher and Burford 
(1967) indicates that even at r / a  = 5l”, the error is 1% or so. Hence the estimates (5.6) 
can be considered as reasonable, with an error of probably no more than a few percent. 
We shall use these values in the remainder of the paper. 

6. Conclusion 

In the preceding section, we showed that it is possible to adsorb the second-order 
perturbation theory corrections for small J into a shift in the critical temperature and a 
continuous non-universal exponent. At this stage, it is convenient to rewrite the above 
results in a more natural form. To do so, we take K‘ = p IJ’I as our basic temperature 
variable and define 

A =J/IJ’I. (6.1) 
For finite A,  the critical temperature K :  = K :  ( A )  is determined by 

A K  = 0.  

Hence from ( 5 . 5 ) ,  we find that Kk is the solution of 

K :  = K:,o - (p/2A) tanh’ AK: + O(A’) 

a ( A )  = (2q/A) tanh’ AK, + O(A2) 

(6.3) 

The specific heat exponent a can now be expressed as 

(6.4) 

The solution of (6.3) for & ( A )  is plotted in figure 2 for 0 6 A s 0.8. A similar plot of 
CY ( A )  is given in figure 3. Note that these curves should only be considered as schematic 
since they are based on results valid only to second order in tanh AK:. If tanh AK: is 
replaced by AK:,o, (6.3) and (6.4) reduce to the results, (1.3) and (1.5), quoted in the 
Introduction. These approximations are indicated in the figures by the broken curves. 
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0 51 I 

A 

Figure 2. Variation of the critical temperature K: with A = J/iJ’I. The full curve represents 
the solution of (6.3), while the broken curve is the simpler approximation (1.3). 

06 I 

A 

Figure 3. Variation of the specific heat exponent a with A = J/lJ’l. T h e  full curve represents 
(6.4), while the broken curve is the simpler approximation (1.5). 

The crucial assumption underlying this perturbation calculation (recall 0 2) concerns 
the analyticity of the critical parameters for J’< 0 and small A .  This has certainly not 
been established. However, if a similar argument is applied (Kadanoff and Wegner 
1971) to the eight vertex model, Baxter’s exact results are recovered to leading order in 
the four-spin interaction. This success gives us confidence that the analysis described in 
this paper is valid. 
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As noted earlier, Nightingale (1977) has performed approximate renormalisation 
group calculations on (1.1). Unfortunately, the smallest value of A considered was 
A 2 0.44 [ K  = 0.21 for which he estimated 

(Y 2 0 . 0 7  K: - 0.448. (6.5) 

(Y 2 0 . 3  K :  -0.47. (6.6) 

This discrepancy is, however, of little significance in view of the large value of A 
involved. On the other hand, Nightingale’s results do show a definite curvature as a 
function of K which could be consistent with the quadratic predictions of (6.3) and 
(6.4). 

Plischke and Oitmaa (1978) have recently generated high-temperature series 
expansions for the staggered susceptibility of (1.1) and a three-dimensional analogue. 
Unfortunately, the two dimensional series are too short for any definite conclusions to 
be reached. Additional renormalisation group and/or series investigations would be 
highly desirable. 

Despite the unsatisfactory situation described in the preceding paragraphs, the 
argument of van Leeuwen (1975) and Nightingale’s results suggest that the square 
lattice Ising model with competing nearest and next-nearest interactions does possess a 
non-universal critical line beyond the regime in which the analysis described here is 
valid. In view of the argument of Krinsky and Mukamel(l977) it seems reasonable to 
conjecture that this line is one of the critical lines which emerge from the two- 
dimensional planar model’s multi-critical point (JosC er a1 1977). The four-fold 
degeneracy of the ground state (see 8 2) suggests that the line may be isomorphic to that 
analysed by Kadanoff (1977). If this is so, and we accept Kadanoff’s arguments, then 
along the non-universal line (1.1) should be in the same universality class as the 
Ahskin-Teller and eight-vertex models. It would be very interesting if this relationship 
could be exhibited more explicitly. 

A final very intriguing question concerns the behaviour as the system crosses the 
boundaries between the SAF and A or F phases (see figure 1). If J = - 2J’,  it seems 
certain that there is no long-range order, since the ground-state energy remains 
invariant to the spin-flip of alternating rows (or columns). Does this imply that T, = O? 
Or is it possible that the model still possesses a finite transition temperature isomorphic 
to the planar model’s multicritical point? It is hoped to return to these questions in a 
later publication. 

These values are considerably smaller than those predicted by (6.3) and (6.4) which give 
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